(a) Definitions. The following words and terms, when used in this chapter, shall have the following meanings, unless the context clearly indicates otherwise.
(1) Constructed wetlands--Designed and man-made complexes of saturated substrates, emergent and submergent vegetation, animal life, and water that simulates natural wetlands. Constructed wetlands as described in these rules are meant to function exclusively as wastewater treatment units. They consist of two varieties: submerged flow systems and free water surface systems. Combinations of these varieties may also be acceptable methods of treatment. Constructed wetlands are constructed treatment systems that are inundated or saturated by wastewater flows at a frequency and duration sufficient to support, and under normal circumstances do support, a prevalence of flora and fauna typically adapted for life in saturated or inundated soil conditions, i.e., a wetland. Terms that are considered synonymous with constructed wetlands treatment systems are man-made wetlands, engineered wetlands, artificial wetlands, rock reed filters, vertical bio-reactor, submerged flow systems, free water surface systems, artificial marsh, marsh reed filter, botanical reactor, rooted emergent wetland filters, and microbial rock plant filters.
(2) Submerged flow--A submerged flow system consists of a lined basin or channel filled with a granular rock media. The media supports the growth of both emergent vegetation on the surface and fixed bio-film on the subsurface. The wastewater flows horizontally, vertically, and transverses the subsurface of the rock media through interstices of the media and vegetation root structure. Wastewater levels are nominally maintained at least six inches below the rock media surface. Total rock media depth shall not exceed 24 inches.
(3) Free water surface--The free water surface system consists of a lined basin or channel partially filled with soil or other media suitable for supporting rooted emergent and/or submergent vegetation. Wastewater flows over the top of the media and through the stalks of the emergent and/or submergent vegetation at an average depth no greater than 18 inches.
(b) General considerations. These guidelines are intended for an exemplary basis. The criteria for design, construction, and operation should be based on data collected from operational data of similar facilities, pilot-plant and bench-scale studies, and/or proper engineering and scientific investigations which should be submitted at the time of review.
(1) Algal mat removal. Provisions shall be made for algal mat removal from primary treated effluent prior to entering into the wetland units. These provisions may include bar screens, adjustable inlets, baffles, and other methods as approved by the commission.
(2) Natural wetlands. The commission will prohibit the use of any land defined as a wetland by the United States Army Corps of Engineers in 40 Code of Federal Regulations §122.2 and subject to regulations found in the federal Clean Water Act, §404, for use in wastewater treatment. Any subsequent construction activity located in a natural wetland may require a permit from the United States Army Corps of Engineers.
(3) Typical wetlands vegetation. Suggested flora for constructed wetlands in the State of Texas, include the following.
(4) Allowed uses. Constructed wetlands can be used as a:
(5) Primary treatment. All systems shall be preceded by primary treatment. Systems may be preceded by secondary treatment. Primary treatment can include septic tanks, Imhoff tanks, facultative lagoons, aerated lagoons, stabilization ponds, and any other treatment process which removes the settleable solids and floating material. The design of these pretreatment units shall conform with applicable state design criteria.
(6) Liners. When required in the facility's permit or by the commission, basins shall be lined with an impermeable liner, either soil or synthetic, as described in subparagraphs (A) and (B) of this paragraph.
(7) Flood hazard analysis. The 100-year flood plain elevation shall be provided. Proposed treatment units which are to be located within the 100-year flood plain will not be approved for construction unless protective measures satisfactory to the commission (such as levees or elevated treatment units) are included in the project design. If construction inside the 100-year flood plain is necessary, authorization from the proper coordinating authority must be obtained. All units must either be three feet above the 100-year flood plain or have a berm with at least three feet of freeboard above the 100-year flood plain.
(8) Berms. Berms shall have side slopes of no steeper than 3:1. Berms shall be lined or constructed of impermeable clay as described in the preceding section pertaining to soil liners. All clay berms shall be keyed into the clay liner.
(9) Configuration. Facilities with permitted average daily flows over 100,000 gallons per day shall conform with the following configuration standards.
(10) Flow distribution.
(11) Flow equalization. Flow to the units shall provide for a uniform environment and growth conducive to wetlands.
(12) Initial vegetation spacing. Plants should be placed no greater than 66 inches apart (center to center). All plants to be used should be healthy, insect free, and undamaged. A broad diversity of plant species within any unit is recommended.
(13) Total suspended solids (TSS) removal. The TSS removal efficiency of the wetland system is dependent on the quiescence of the system. However, if the facility is unable to meet its permitted parameters, alternate means of solids removal must be pursued.
(14) Nitrification. Current wetland technology has not proven the ability to consistently nitrify typical domestic strength sewage to meet average permit limitations below 5.0 mg/liter. The design of any wetland proposed for use in this type situation will incorporate a separate nitrification process.
(15) Harvesting. Harvesting of dead wetland vegetation and detritus plant matter is recommended.
(c) Submerged flow system design.
(1) Basic design parameters. SFS wetlands are sized according to primary and/or secondary treatment efficiency preceding the units, i.e., fraction of remaining five-day biochemical oxygen demand (BOD 5 ), and the permitted 30-day average effluent discharge concentration of BOD 5 . The following factors shall be considered in the selection of the design hydraulic and organic loadings: strength of the influent sewage, effectiveness of primary and/or secondary treatment, type of media, ambient wastewater temperature for winter conditions, and treatment efficiency required.